If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2-40n-12=0
a = 7; b = -40; c = -12;
Δ = b2-4ac
Δ = -402-4·7·(-12)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-44}{2*7}=\frac{-4}{14} =-2/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+44}{2*7}=\frac{84}{14} =6 $
| 2(28-y)=-3y+28 | | 2(-5+x)=2(5-x) | | 6x+4x=3x+6 | | 12b=6b-6 | | -7-18x=-27x+2 | | 4d+2=(d-1)(d-3) | | 2(104+3x)=-3x+28 | | 2(-27-x)=5(-6-x) | | 7n^2-22n-24=0 | | 1.5^(x-1)=14.5 | | 0.5x^2+x+2=0 | | -3(-2-7k)=153 | | 2(-27-x)=6(-6-x) | | ℎ= | | 9+5x+17-10x=10x+35 | | 3p-p=8 | | 12(21-x)=6(-3x+28) | | 7x=0.21 | | 1.8x=4x-32 | | 8w-12=-4(w+6) | | 2(72+x)=3(-x+28) | | 2n+16=-5n+51 | | 2n+16=-5n+51* | | -8(1+3n)=-176 | | 5(-4+3x)=-100 | | 3x-3+2x=x+2 | | 49-5x=34 | | x*9,600=12 | | 44=8x-20 | | 100000=5x+x | | z*7/9=3 | | 5x-18=x-4 |